Property:Description

From mywiki
Jump to navigation Jump to search

This is a property of type Text.

Showing 8 pages using this property.
2
Maintain navigable depth of canal.  +
I
This Summary for Policymakers presents key findings from the Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX). The SREX approaches the topic by assessing the scientific literature on issues that range from the relationship between climate change and extreme weather and climate events (‘climate extremes’) to the implications of these events for society and sustainable development. The assessment concerns the interaction of climatic, environmental, and human factors that can lead to impacts and disasters, options for managing the risks posed by impacts and disasters, and the important role that non-climatic factors play in determining impacts. The character and severity of impacts from climate extremes depend not only on the extremes themselves but also on exposure and vulnerability. In this report, adverse impacts are considered disasters when they produce widespread damage and cause severe alterations in the normal functioning of communities or societies. Climate extremes, exposure, and vulnerability are influenced by a wide range of factors, including anthropogenic climate change, natural climate variability, and socioeconomic development. Disaster risk management and adaptation to climate change focus on reducing exposure and vulnerability and increasing resilience to the potential adverse impacts of climate extremes, even though risks cannot fully be eliminated. Although mitigation of climate change is not the focus of this report, adaptation and mitigation can complement each other and together can significantly reduce the risks of climate change.  +
N
The Earth's climate has changed throughout history. Just in the last 650,000 years there have been seven cycles of glacial advance and retreat, with the abrupt end of the last ice age about 7,000 years ago marking the beginning of the modern climate era — and of human civilization. Most of these climate changes are attributed to very small variations in Earth’s orbit that change the amount of solar energy our planet receives.The current warming trend is of particular significance because most of it is very likely human-induced and proceeding at a rate that is unprecedented in the past 1,300 years.Earth-orbiting satellites and other technological advances have enabled scientists to see the big picture, collecting many different types of information about our planet and its climate on a global scale. Studying these climate data collected over many years reveal the signals of a changing climate.  +
Climate change is a normal part of the Earth’s natural variability, which is related to interactions among the atmosphere, ocean, and land, as well as changes in the amount of solar radiation reaching the earth. The geologic record includes significant evidence for large-scale climate changes in Earth’s past.  +
R
Recording on porch when all of sudden Ardour stops recording though continues tracking.  +
Want to use xandr to reflect monitor taking advantage of best resoluition yet coveringf full screen size or more.  +
S
Bishop Middleham  +, Guardia Vomano  +, Haarlem  +,
W
Climate change is a significant and lasting change in the statistical distribution of weather patterns over periods ranging from decades to millions of years. It may be a change in average weather conditions, or in the distribution of weather around the average conditions (i.e., more or fewer extreme weather events). Climate change is caused by factors that include oceanic processes (such as oceanic circulation), variations in solar radiation received by Earth, plate tectonics and volcanic eruptions, and human-induced alterations of the natural world; these latter effects are currently causing global warming, and "climate change" is often used to describe human-specific impacts. Scientists actively work to understand past and future climate by using observations and theoretical models. Borehole temperature profiles, ice cores, floral and faunal records, glacial and periglacial processes, stable isotope and other sediment analyses, and sea level records serve to provide a climate record that spans the geologic past. More recent data are provided by the instrumental record. Physically-based general circulation models are often used in theoretical approaches to match past climate data, make future projections, and link causes and effects in climate change.  +